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ABSTRACT 
To observe and study the behavior of Majorana wires, we use numerical simulations 
with the system using a Kitaev Chain model through the second quantization formalism 
as one of the possible bases for quantum computing. Due to the degeneracy of the 
ground state in the Majorana Wire, a direct measurement of its parity is not possible, 
so both ends of the wire are connected to a quantum dot. These connections are 
controlled so they are only open in “Pulses” magnetically controlled, of which the 
Strength and Duration are controllable, the former forming the Hopping Parameter for 
the system, and they affect when the quantum dot is filled. Each different parity will 
have different probabilities of filling the quantum dot depending on the values of such 
parameters, each accompanied by a Parity Readout Error chance. The quantum dot 
itself presents a random factor due to its varying possible On-site energy. To find the 
best parameters taken into account the random nature of the probabilities found, we 
simulated multiple iterations, with 5000 realizations each. As the main result, we can 
optimize the results of the Parity Readout Error concerning the length and strength of 
the tunneling pulses. We generalized previous studies by taking into account non-
symmetric tunneling pulses and on-site detuning. 

Keywords: Numerical Simulation; Majorana; Majorana Wire; Topological Materials; 
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1. Introduction 

Since its invention during the 1960s, modern computers have advanced greatly 

in both power and efficiency. While there were other forms of computational 

technologies before, it was only in the 1960s that the modern computer system took 

form thanks to the invention of Walter Brattain and John Bardeen: the transistor. Before 

the invention of transistors engineers and scientists had to use vacuum tubes, which are 

much bigger and slower than transistors, which greatly diminish the potential for 

computers. Now with the transistors, which could be easily mass-produced, and would 

prove to be able to be greatly miniaturized, the computational revolution could start. 

Nowadays computer devices with greater processing capacities than the ones that 

occupied entire rooms can be found in almost anybody's pocket, and electronic devices 

are now essential to the workings of the modern world. However, as they become more 

and more common and necessary, it has been requested of them more and more 

processing power in smaller sizes. 

This has led to greater and greater miniaturization of the processing units, and 

therefore of the transistors, to increase their processing capacity per area, but this 

miniaturization has its problems. Beyond the problem of overheating that these systems 

become to have increased propensity as more transistors are placed together, this 

miniaturization is reaching a limit in size. Nowadays still experimental transistors are 

reaching sizes of about 5-7 nm[1], but this is seen to be the limit size for traditional 

transistors, as around 5nm quantum tunneling starts to happen and affect the uses of the 

transistor[2]. Many before had claimed that around 2021 continuous research for the 

miniaturization of traditional transistors would become “economically undesirable” due 

to reducing returns[3]. This has led many to look for different alternatives for the 
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traditional transistors[4], and along with them, there is the possibility of the use of 

quantum computing. 

Quantum computing is a relatively new technology that develops techniques 

and technologies that can use quantum effects on the improvement and construction of 

computers. Credited to have started in 1980 by Paul Benioff's proposal to use a quantum 

mechanical model for the Turing Machine[5], since then it has developed greatly and 

many different lines of research exist. As all these lines develop and improve, quantum 

technologies have shown to be theoretically not only capable to have as much 

processing power as traditional computing, but have recently shown in practice to be 

so. The Sycamore processor produced by Google[6] and a Chinese Photonic quantum 

computer[7] have both claimed “Quantum Supremacy” in 2020, which means that their 

quantum computers can now perform processes that “no classical computer can perform 

the same task in a reasonable amount of time and is unlikely overturned by classical 

algorithmic or hardware improvements”[7]. 

Besides that, quantum technologies are still very much experimental, as they are 

affected by many difficulties that traditional systems don’t, especially on control and 

maintenance of the systems. Due to the nature of the quantum system, they need to deal 

with nanometric systems, and beyond the natural difficulty of working at such a small 

scale, systems at this size are very sensitive to any external noise or background effect. 

This all makes that these technologies need to be worked on isolated conditions, 

shielded against electromagnetic fields and environmental noise, and cooled to near 

absolute zero. This all makes these systems very complex and costly to build and if 

quantum computing is to become a possible replace, or even supersede, traditional 

technologies it has to become more resilient to perturbances. 
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All electronic devices use binary bits as the bases for all their processes, and in 

traditional computing they are represented by electricity (or lack thereof) through 

semiconducting lines or the polarity of a material in a metallic plate. Some quantum 

computer technologies use qubits instead, using some form of quantum particle or state 

to represent the same binary information in one of many ways. These qubits are often 

one of the most sensitive parts of the system, as they need to be able to not only be 

reliably read and reliably stored (even if temporarily) but also able to be easily and 

quickly rewritten. With that in mind, many researchers are focused on finding a way to 

make these qubits more resilient to perturbance. This work explores the possible 

solution of the use of Majorana wires, a specific kind of quantum device which uses the 

unique properties of Majorana particles and could allow the production of more 

efficient and functional quantum computers. 

1.1. Majorana Anyons 

Anyons are a kind of quasiparticle, neither a fermion nor a boson, that cannot 

exist in the 3D world, only in the 2D, and whenever two Anyons swap positions they 

change their wave functions[8]. This allows them to be used to do what is called 

Braiding, changing the sequence of a series of Anyons by swapping their positions, 

creating a unique combination and structure. This cannot be done by either fermions or 

bosons, as exchanging the position of 2 particles twice in 3D ends with no difference 

from the original condition[9]. This, however, requires that the system remains in 2D, 

which can be done by the use of Topological Materials. 

Topological materials are materials which properties do not change with their 

topology, and the most common example is the topological insulators, which are 

insulators in the bulk but conductive on the surfaces[10, 11]. Topological materials are 
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called that because their special properties are linked to their topology, and as long as 

their topology is maintained (that is, in any shape as long as their surface is not broken) 

they maintain their properties. One of these topological properties, that arrives when a 

chain of certain materials is placed in proximity of a s-wave superconductor, is the 

ability to create vortices, a natural quantum defect of superconductors, that can bind 

Anyons, an exotic kind of theorized particle that can be used for computing[9]. 

Computers that would use this technology are called topological quantum 

computers, and they can use these captured particles as qubits, the fundamental part of 

a quantum computer, analogous to bits to regular computers. These particles can be 

“moved” around each other, changing their specific states, so they can be “braided”, 

forming into different combinations that can be used to store and calculate 

information[9]. For these braids to be possible to occur it is necessary some very specific 

conditions, which include the necessity of anyons, an elusive kind of particle of which 

few kinds have been theorized. 

Majorana Anyons, also known as Majorana particles, is an example of theorized 

anyon that would have the unique property of being their own antiparticle, in direct 

opposition to Dirac fermions. Majorana anyons have been theorized first by Ettore 

Majorana in 1937 in his paper “A symmetric theory of electrons and positrons”[12] as 

he finds a solution to the Dirac equation were fermions are their own antiparticles, 

coming to the point to present in its summary “[…] there is no longer any reason to 

speak of negative-energy states nor to assume, for any other types of particles, 

especially neutral ones, the existence of antiparticles […]”[12]. Often Majorana particles 

will be called “Majorana Fermions”, although this is an erroneous naming, as two 

Majorana particles are created by changing the statistics from fermionic to non-abelian 

statistics.  
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Nowadays it is known that all fermions on the Standard Model are Dirac 

fermions, with exception of neutrinos which still require more research to be defined as 

one or another, and Majorana particles have yet to be confirmed. It has been theorized, 

however, that under certain conditions, a fermion can separate into two parts, known as 

Majorana Zero Modes (MZM), when in a superconductor, and many have researched 

into such possibility, with promising results[12]. Although MZMs will always appear as 

bounded pairs, multiple pairs in a chain can be manipulated to reform these pairs with 

MZMs in different sites[13], leaving an unbounded single MZM at the end of the chains, 

as in Figure 1. This process can be well seen in the steps to transition the fermionic 

statistics to non-abelian statistic, done by the following steps [14]: 

 Starting with the Dirac fermionic operators, 𝑎ො 𝑎ොା, which represent 

annihilation and creation of a fermionic particle, respectively. 

({𝑎ොା, 𝑎ොା} = {𝑎ො, 𝑎ො} = 0, {𝑎ො, 𝑎ොା} = 1). 

 From there we get the Majorana operators 
ఊభ

√ଶ
= 𝑎ො + 𝑎ොା =

ఊభ
శ

√ଶ
, 

ఊమ

√ଶ
=

൫௔ොି௔ොశ൯

௜
=

ఊమ
శ

√ଶ
. As can be seen, the creation and annihilation operators for 

the Majorana are the same. 

 It also gives that {𝛾௞, 𝛾௟} = 2𝛿௞,௟, 𝛾ଵ
ଶ = 𝛾ଶ

ଶ = 1, 𝛾ଵ𝛾ଶ = −𝛾ଶ𝛾ଵ, 𝑎ො =

ఊభା௜ఊమ

ଶ
, 𝑎ොା =

ఊభି௜ఊమ

ଶ
. This means that with one fermionic operator, there 

are two Majorana particles, or MZM’s. 

The resulting Majorana Anyons are localized, but still can be moved far away 

from each other[14], as well as being greatly resistant to the two most common forms of 

error in the quantum states used as qubits: the classical error, when there is a flip on the 
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qubit changing its value from one to 1 to 0 or vice versa; and the phase error, when 

there is a flip on all the qubits equal to 1 relative to those equal to 0[15].  

This great resilience has not passed unnoticed by the researchers, many of who 

are looking at how to apply it for the construction of devices for quantum computers 

that are more resilient to decoherence, especially for quantum memory[6, 13]. One of the 

possible technologies that can use this is Majorana Wire, a cutting-edge topic of 

research that can reliably create and store MZMs.  

1.2. Majorana Wires 

 A Majorana Wire is a device composed of a 1D nano-sized semiconductor wire 

in a superconductive substrate with a controllable external magnetic field that can be 

applied to it. This specific construction allows the semiconducting wire to behave as a 

Topological Material, sharing properties of both its semiconducting nature and the 

superconducting substrate where it lays. With the controlled application of a magnetic 

field over this system, the wire becomes a topological superconductor and has the 

conditions necessary for the creation of the unpaired MZMs at the ends of the wire that 

can be “stored” at the end of the chain formed by the 1D semiconductor wire and then 

“re-pair” them [16]. This leaves non-locally bounded MZMs at the edges of the wire that 

can be used to store information as qubits that can be safely stored and easily measured. 

To do so, different designs for the Majorana wire have been conjectured in different 

Figure 1: Representation of a Kitaev Chain for the Majorana Wire in two different forms of pairing, one with inter-
site cooper pairings, the other with intra-site. Ellipses are sites, solid circles are MZM, straight lines are couplings. 
Pairing a has one unbounded MZM’s at the end of each chain. 
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experiments to try to observe and detect the MZM’s[16, 17], through different methods, 

including and although some have shown some promise in being able to detect an 

MZM[18] it has not been proven yet. 

The construction of such devices, however, is a difficult affair, from both a 

standpoint of complexity and cost, but it is possible to numerically simulate the 

behavior of such devices and gather some important understanding and information 

about it. These simulations allow us to predict and evaluate the behavior of the fermions 

at the edges of the Majorana Wire in different conditions and regimes with minimal 

cost. To do so it is necessary to a formalism and a model, both that ideally fit well with 

the presented physical system and that can be easily understood. The system is chosen, 

which is the typical system utilized for this kind of system, is the Kitaev Chain Model 

through the Second Quantization formalism. 

1.3. Second Quantization & the Kitaev Chain 

Kitaev Chain is a model created by Alexei Kitaev in 2001 in the paper 

“Unpaired Majorana anyons in quantum wires”[15]. As the name says, the work is direct 

to the work with quantum wires, and the model there presented was specifically created 

to represent Majorana wires and work is within it. The system is composed of a series 

of 0D sites organized side by side in a 1D line, forming a “chain”, and each site can fit 

two MZM. These MZMs are always bounded to one another, either in the same site or 

in a different site, forming two kinds of pairing (Figure 1). The second kind leaves one 

unbounded MZM at each end of the chain, which will be used for the qubit to the 

system.  

The system can exist in two different phases with different parities: even and 

odd (Figure 1, a and b respectively), with these parities forming the bases for the qubits 
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of the system. These parities, however, are not related to the number of MZM’s in the 

system, as the creation of MZM’s always creates two of them from one fermionic 

operator. This parity is related to the number of fermionic operators in the system, 

which will depend on the specific coupling between the MZM’s. The first phase, 

presented in Figure 1 (a) represents the system with all the MZM’s paired in-site, and 

it is the even parity system. The second phase, presented in Figure 2, shows MZM’s 

coupled between sites, leaving two MZM’s uncoupled at the ends of the wires, and it 

represents the odd parity of the system[14]. These two states will work as the “0” and 

“1” states of the qubit system, just as in traditional computers electric current and lack 

thereof work as their “1” and “0” states. There is also a special advantage, as 

superposition allows multiples states to “stack” onto one another, allowing multiple 

results to be compiled on the same qubit, expanding considerably the capacity of the 

system.  

When using the Kitaev Chain model the representations are done by the Second 

Quantization formalism, which allows representing the state of each site as well as 

easily represent the possible operations applied to the sites. This model of 

representation can be used to represent both bosons and fermions, but given that this 

work focuses on Majorana anyons, the uses with bosons will not be discussed. A system 

of size n is represented by a series of n numbers representing the state of each site within 

a ket. Each site on a system can be considered to be either occupied or not occupied by 

Figure 2: Representation of the Kitaev Chain 
with 8 sites and an added quantum dot to both 

its ends. If the Kitaev chain is on the Ideal 
Kitaev Limit ϵଵ to ϵ଼ are 0, and all tunneling 
between sites within the chain are equal to 

τୡ୦ୟ୧୬ = 1. 
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one fermion, represented by a 1 or 0 to on the position of the site. As an example, in a 

3 sites system, with 1 fermion in the first and second site would be represented by: 

|1,1,0> 

All sites can be represented in such a manner, but the vacuum state, which is a 

state where there is no filled site, is usually represented as |vac> independently of the 

size of the system. Operators can be applied to these states to represent the filling and 

emptying of sites, respectively a creator and an annihilation operator. These operators 

are represented by a 𝑐௝
ற and a 𝑐௝, respectively, where the j represents the site position 

(counted from right to left). Creation operators can only affect empty sites and 

annihilation operators can only affect filled sites. Any attempt to apply an operator to 

an invalid site is considered invalid and results in an invalid operation, represented by 

a single 0. 

𝑐ଵ
ற|0,1,0> → |1,1,0> 𝑐ଵ

ற|1,1,0> → 0 

Multiple operators can be represented affecting the same system, with the 

operations being considered to happen in sequential order. Any system of n size can be 

represented by any other system of the same size with a sequence of operators. 

Operators can, however, make the system end in an antisymmetric state depending on 

the order that the operations happen, in which case there will be a “-” signal representing 

the “-” for the wavefunction amplitude. 

|1,1,1> = 𝑐ଷ
ற𝑐ଵ

ற|0,1,0> 𝑐ଵ
ற𝑐ଷ

ற|0,1,0> → -|0,1,0> 

Representation 1: System with 3 sites with two fermions, at the first and second sites. 

Representation 2: 3 sites system with one fermion at 
position two being operated by a creation operator at 

position 1, leading to a system with sites 1 and 2 filled. 

Representation 3: 3 sites system with two fermion at 
position one and two being operated by a creation 

operator at position 1, leading to a invalid operation. 

Representation 4: 3 sites system with all sites filled by 
fermions is equal to 3 sites system filled at position 2 
being affected by two creation operators at position 1 

and 3. 

Representation 5: 3 sites system with a fermion at 
position two being operated by creation operators at 
position 3 and 1, leading to an antisymmetric 3 site 

system with a fermion at position 1. 
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A system will have a number of different states equal to 2n, where n represents 

the number of sites available on the system. For an example of the basis states of a 2 

sites system there are only the following 4 states possible: 

|0,0> |1,0> |0,1> |1,1> 

Given that any system can be turned into another by the proper application of 

creation and annihilation operators, there are many that a state can become another one, 

so the workings of these operators can be represented by a matrix operator. This is a 

square matrix with 2n rows, which lines and columns represent, respectively, the 

original state in which the operator is being applied and the resulting state of the 

operation. Cells that represent that this operator can be applied to the original state to 

transform it into a different state are filled with a 1, and otherwise left empty with a 0, 

and often only a single cell in each row will be filled. Fully empty rows represent that 

this operation on this original state is invalid. 

This matrix operator is represented with a column representing all the possible 

base states of the affected system just at the left of the matrix. A matrix operator for the 

𝑐ଵ
ற, that is, the creation operator for the first site, applied to a 2 sites system, can be 

represented by: 

൮

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

൲

|0,0 >
|1,0 >
|0,1 >
|1,1 >

→

|1,0 >
0

|1,1 >
0

 

The same for a matrix can be applied to any operator to any system of any size, 

but as systems become linearly larger the matrixes become exponentially larger. A 

single matrix can represent a sequence of operators being applied to a single system, 

Representation 6: All possible basis states for a 2 sites system (from right to left): vacuum state, one fermion at 
first position, one fermion at second position, fully filled. 

Representation 7: Matrix operator for a creation operator operating in a two site system. 
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and this matrix can be calculated by applying a matrix dot operation on the individual 

matrixes in the sequence they are applied to the system. If a sequence of operations 

would lead to a negative value for the amplitude of the wave function, the filled cell in 

the matrix will be represented by a -1. 

This formalism allows us to represent very well a system within the Kitaev 

Chain model, Majorana wire included, and using this formalism we can also represent 

the energetic state of the system. To do so it is necessary to add energy parameters to 

the system, representing the different energy values of different parts of the system, to 

different components of the model that represent each different part of the system. The 

following Hamiltonian is for a Kitaev Chain of N sites, formed using the Second 

Quantization formalism[17, 19, 20]: 

𝐻௖௛௔௜௡ = −𝜖௝ ෍ 𝑐௝
ற𝑐௝

௝

+ ෍ൣ−𝜏൫𝑐௝ାଵ
ற 𝑐௝ + 𝑐௝

ற𝑐௝ାଵ൯൧

ேିଵ

௝ୀ଴

+ ෍ൣ|Δ|൫𝑐௝𝑐௝ାଵ + 𝑐௝ାଵ
ற 𝑐௝

ற൯൧

ேିଵ

௝ୀ଴

 

It is divided into 3 different parts, each reflecting one part of the Kitaev Chain 

model, each with its own energy parameter: 

 The first part of the Hamiltonian ൫−𝜖௝ ∑ 𝑐௝
ற𝑐௝௝ ൯ represents the occupied 

sites of the system. On-site energy parameter (𝜖௝) multiplying it 

represents the energy of the site filled by a fermion. 

 The second part of the Hamiltonian ൫∑ −𝜏൫𝑐௝ାଵ
ற 𝑐௝ + 𝑐௝

ற𝑐௝ାଵ൯ேିଵ
௝ୀ଴ ൯ 

represents the tunneling interactions in-between sites that allow the 

movement of fermions. The energy parameter is the Hopping energy (τ), 

Equation 1: Hamiltonian of Kitaev Chain. ϵ is the On-site energy parameter, τ is the Hopping energy parameter, Δ is 
the Superconducting parameter, j is the site number. 
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which is the energy for one particle o move from one site to the other (or 

for it to be created in one site and destroyed on the other). 

 The third part of the Hamiltonian ൫∑ |Δ|൫𝑐௝𝑐௝ାଵ + 𝑐௝ାଵ
ற 𝑐௝

ற൯ேିଵ
௝ୀ଴ ൯ represents 

the energy of breaking the cooper pair that come from the superconductor 

substrate into the Majorana Wire. The parameter for this energy is 

Superconductor energy Δ, also called Delta parameter. 

1.4. Model 

Using the Hamiltonian for the Kitaev Chain presented that uses the Second 

Quantization Formalism, we can represent all the potential energy-states of a system in 

graphical form by using a Hamiltonian Matrix followed by the representation of the 

possible states of the system in a vertical column. As with the operator matrix 

(Representation 7), the position of energy parameters within the Matrix represents not 

only the energy of the system in the original state but the energy to make interactions 

between states. For example, the following is the energy matrix for 2 sites Kitaev Chain: 

൮

0 0 0 𝛥
0 𝜖ଵ 𝜏ଵ,ଶ 0

0 𝜏ଵ,ଶ 𝜖ଶ 0

𝛥 0 0 𝜖ଵ + 𝜖ଶ

൲

|0,0 >
|1,0 >
|0,1 >
|1,1 >

 

As with the operator matrix before, each cell position represents its connection 

between the original state (the row) and another state (the column). The original state 

of the row is already at the end of the row (|1,0>), and the state in which a cell is 

interacting is the column number of the cell. For example, the first cell in the 4th row is 

Representation 8: Representation of the Hamiltonian of a 2 site Kitaev Chain system. ϵj is the On-site energy of the 

site j, τk,l is the Hopping parameter between a specific combination of neighboring sites k and l, and Δ the 
Superconducting parameter. 
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originally in the fourth state (|1,1>) interacting with the first state (|0,0>). If the cell is 

filled with a 0, it means that this interaction is not possible. 

 So, for example, taking the second row of the Hamiltonian matrix we have the 

following values: 

(0 𝜖ଵ 𝜏ଵ,ଶ 0)|1,0 > 

The first cell is the interaction between the second and first states of the system, 

which is invalid. The second cell, which is in the second column, is the energy of the 

system without interactions, and naturally is the energy of just filled site. The third cell 

is the energy for the fermion filling the second site to hope between the first and second 

site of the system, therefore making an interaction between the two states. The fourth 

cell is the interaction between the second and fourth states, and this interaction is 

invalid. 

This representation of the Hamiltonian is very useful not only to observe the 

difference in the eigenenergy of the states in the system but also to make calculations, 

like solving the Schrödinger Equation to find the probability of finding a fermion in 

any site of the system. To do these calculations, the Hamiltonian Matrix needs to be 

broken into different blocks based on its pairing. Independently of how long is a Kitaev 

Chain, the system can have only two parities, depending on the number of fermions 

within the system. The blocking of the Hamiltonian Matrix by parity will include only 

the cells that deal with states of such parity interacting with states with the same parity. 

The two energy block matrixes created from the two sites system are, by parity: 

 

Representation 9: Eigenenergy of the second state of a two sites Kitaev Chain. ϵj is the On-site energy of the site j, 

τk,l is the Hopping parameter between a specific combination of neighboring sites k and l. 
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𝐸𝑣𝑒𝑛 → ൬
0 Δ
Δ 𝜖ଵ + 𝜖ଶ

൰
|0,0 >
|1,1 >

 

𝑂𝑑𝑑 → ቀ
𝜖ଵ 𝜏ଵ,ଶ

𝜏ଵ,ଶ 𝜖ଶ
ቁ

|1,0 >
|0,1 >

 

Each of the energy blocks represents the energetic results by parity, and each of 

those can further be divided into two different eigenstates: ground or excited. These 

vary depending on the interactions of each of the forming states, according to the 

following equations: 

𝐸𝑣𝑒𝑛 𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 → |𝑒 > =
1

√2
∗ (|0,0 > −|1,1 >)

𝐸𝑣𝑒𝑛 𝑒𝑥𝑐𝑖𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 → |𝑒′ > =
1

√2
∗ (|0,0 > +|1,1 >)

𝑂𝑑𝑑 𝑔𝑟𝑜𝑢𝑛𝑑 𝑠𝑡𝑎𝑡𝑒 → |𝑜 > =
1

√2
∗ (|1,0 > −|0,1 >)

𝑂𝑑𝑑 𝑒𝑥𝑐𝑖𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒 → |𝑜′ > =
1

√2
∗ (|1,0 > +|0,1 >)

 

This will serve as the mathematical foundation for the representation of the 

physical system of the Majorana Wire, allowing us to make analytical analyzes of the 

system, and allowing to perform numerical analyzes and predict real results. These will 

be done by inputting numerical values to the parameters in the Hamiltonian to represent 

different regimes the system might be, allowing to explore multiple possibilities of how 

to work with the Majorana wire. There are many different possible regimes, so one 

must be chosen that allows and facilitates the control of the MZM’s on the ends of the 

wire. 

There is, however, only one controlled regime that allows the creation of the 

MZM’s at the end of the wires: the Ideal Kitaev Limit. This is a specific regime that 

Equation 2: The eigenenergy of Even and Odd parity, in ground and excited stated. 

Representation 10: The energy blocks of Even and Odd parity, respectively, taken from the Hamiltonian of the 
full system. 
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calls a specific value for all the parameters within the system, and while its name is 

“Ideal” it is perfectly achievable within reality. It requires the system to be in a 

dimerized state and have the following values for its energy parameters: 

 All sites within the system have their On-site energy equal to 0 (𝜖௝ = 0, 

for any j). 

 Hopping and Superconducting parameters within the system are both 

equal to one another and equal to 1 (𝜏௝ = 1 = Δ, for any j). 

With this great foundation for the simulations of the Majorana Wire we can 

begin calculations to observe the workings of the system. As this system would create 

MZM’s as wanted, the focus of this research would be to find results that are 

energetically different, allowing for easy readings of the parity of the system. 

2. Numerical Work 

2.1. Numerical Work and Quantum Dot 

Using the Ideal Kitaev Limit models in the simulations, interesting results were 

possible to be established. By solving the Schrodinger equation showed that the system 

at ground state forms a two-fold degeneracy, and both parities show the same energy 

level. This is positive, given that this degeneracy allows the system to easily flip to any 

state and creates a non-preferential nature to either state, which makes the system an 

ideal qubit, but this also creates the problem that it cannot be differentiate energetically. 

With that, direct measurements of the system parity are impossible, but it is still 

possible to try to measure the system parity indirectly by connecting a quantum dot to 

the system, as it can be seen  
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The quantum dot connection to the system allows a new site for the system, 

which does not need to have the same parameters and the Ideal Kitaev Limit, allowing 

the fermions within the chain to interact with it in unique ways. The quantum dot would 

be connected to both ends of the system, limiting the interactions of sites of the system 

from only the sites at the ends of the system, and the two connections to the dot would 

allow two different possible tunnelings from which fermions from the system interact 

with the quantum dot. The parameters that interact with the quantum dot don’t need to 

follow the regime of the Ideal Kitaev Limit, which means that their values can be 

different from the others, and this allows some control over the interactions between 

the Kitaev Chain and the quantum dot, and this control can be used to select and identify 

the parity. 

By controlling the tunneling parameter between the quantum dot and the Kitaev 

chain it is possible to control the interactions of fermions from the Kitaev Chain to the 

quantum dot, allowing to control what conditions have a better probability to end with 

the quantum dot filled. By tunning the parameter in a certain way, it is possible to create 

conditions in which it is possible to make sure that if the quantum dot is filled the system 

is a certain parity, allowing to infer the parity of the system through the state of the 

quantum dot. This is a system for parity-to-charge conversion, where the parity of the 

system can be inferred by the charge of the quantum dot and is an indirect measurement 

of the parity of the Kitaev Chain. 

Naturally, the addition of the quantum dot onto the Kitave Chain alters the 

Hamiltonian of the entire system, which is the sum of the Hamiltonian of the Kitaev 

Chain and the Hamiltonian of the Quantum dot and the interaction between them. The 

total Hamiltonian of the system (H) is then a sum of the Hamiltonian of the chain 

(Hchain), which contains the energies of the sites in the chain and their interactions, and 
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the Hamiltonian of the dot (Hdot), which contain the energies of the dot and its 

interactions with the chain. They are latter is presented in Equation 4. 

𝐻 = 𝐻௖௛௔௜௡ + 𝐻ௗ௢௧ 

𝐻ௗ௢௧ = −𝜖ௗ௢௧𝑐ௗ௢௧
ற 𝑐ௗ௢௧ − 𝜏ௗ௢௧ൣ൫𝑐ଵ

ற𝑐ௗ௢௧ + 𝑐ௗ௢௧
ற 𝑐ଵ൯ + ൫𝑐௡

ற𝑐ௗ௢௧ + 𝑐ௗ௢௧
ற 𝑐௡൯൧ 

The addition of the quantum dot also affects how the system will be represented. 

The addition of a quantum dot to the Kitaev chain effectively means an increase in the 

size of the chain in 1, although there are many differences, and we can still use the 

Second Quantization formalism to represent the entire system. As the quantum dot can 

only be either filled or not it can still be represented by a “1” or “0”, respectively, and 

it will appear at the last position inside the ket utilized to represent the entire system 

state, separate from the state of the Kitaev Chain by a semicolon. As an example, the 

representation of a 2 sites system with a fermion on the first site and a filled quantum 

dot is the following:  

|1,0;1> 

Although the representation of both different systems is seemingly similar, both 

the Second Quantization formalism and the Hamiltonian of any Kitaev Chain with a 

Quantum dot are different than just a Kitaev Chain with one more site. While the 

quantum dot can have the same parameters as the Ideal Kitaev Limit regime applies to 

the Kitaev Chain, it still isn’t affected by the Superconductive parameter. The addition 

of the quantum site onto the Kitaev Chain also makes the system now have 8 different 

energy eigenstates, generated by a combination of 3 different factors, that can be 

represented through Second Quantization formalism: 

Representation 11: Representation of a 2 sites Kitaev Chain with the first site of the Kitaev chain and the 
quantum dot filled. 

Equation 4: The Hamiltonian equation of the Quantum dot and its interaction to the Kitaev Chain. 

Equation 3: The Hamiltonian equation for the Kitaev Chain in addition to the quantum dot. 
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 The parity of the Kitaev chain, not including the fermions in the quantum 

dot. On the Second Quantization formalism, the even state appears as “e” 

and odd as “o”. 

 The excitation level of the Kitaev Chain system. On the Second 

Quantization formalism, the even state appears as “`” add to the parity of 

the system. For example, the excited even state is represented by “e`”. 

 The filling of the quantum dot, using the usual method of representation 

of the filling in Second Quantization formalism. 

For example, a system with a Kitaev Chain with an excited odd parity and a 

quantum filled dot would appear as: 

|o`;1> 

These 3 elements combine into 8 different energy eigenstates possible, which 

can be reorganized to form two different Hamiltonians considering the overall parity of 

the system (including the quantum dot). These two Hamiltonians are defined as the 

Even Hamiltonian (He) and the Odd Hamiltonian (Ho). These are shown in 

Representation 13 and 14 with their specific eigenstates and shown again when taken 

into account the parameters of the Ideal Kitaev Limit regime at Representation 15 and 

16. 

|𝑒; 0 >
|𝑜; 1 >

|𝑒ᇱ; 0 >

|𝑜ᇱ; 1 >

→ 𝐻௘ =

⎝

⎜
⎜
⎛

−𝛥 𝜏ௗ௢௧
1

2ൗ (𝜖ଵ + 𝜖ଶ) 0

𝜏ௗ௢௧ −𝛥 + 𝜖ௗ௢௧ 𝜏ௗ௢௧
1

2ൗ (𝜖ଵ − 𝜖ଶ)

1
2ൗ (𝜖ଵ + 𝜖ଶ) 𝜏ௗ௢௧ 𝛥 0

0 1
2ൗ (𝜖ଵ − 𝜖ଶ) 0 𝛥 + 𝜖ௗ௢௧ ⎠

⎟
⎟
⎞

 

Representation 13: The block formed for the Hamiltonians of the Even Parity Kitaev Chain system with a 
quantum dot in its possible iterations. 

Representation 12: Representation of system with a Kitaev Chain with an odd parity and a filled quantum dot. 
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|𝑜; 0 >
|𝑒; 1 >

|𝑜ᇱ; 0 >

|𝑒ᇱ; 1 >

→ 𝐻௢ =

⎝

⎜
⎜
⎛

−𝛥 0 1
2ൗ (𝜖ଵ − 𝜖ଶ) 0

0 −𝛥 + 𝜖ௗ௢௧ −𝜏ௗ௢
1

2ൗ (𝜖ଵ + 𝜖ଶ)

1
2ൗ (𝜖ଵ − 𝜖ଶ) −𝜏ௗ௢௧ 𝛥 𝜏ௗ௢௧

0 1
2ൗ (𝜖ଵ + 𝜖ଶ) 𝜏ௗ௢௧ 𝛥 + 𝜖ௗ௢௧ ⎠

⎟
⎟
⎞

 

𝐻௘ → ൮

−𝛥 𝜏ௗ௢௧ 0 0
𝜏ௗ௢௧ −𝛥 + 𝜖ௗ௢௧ 𝜏ௗ௢௧ 0

0 𝜏ௗ௢௧ 𝛥 0
0 0 0 𝛥 + 𝜖ௗ௢௧

൲ 

𝐻௢ →  ൮

−𝛥 0 0 0
0 −𝛥 + 𝜖ௗ௢௧ −𝜏ௗ௢௧ 0
0 −𝜏ௗ௢௧ 𝛥 𝜏ௗ௢௧

0 0 𝜏ௗ௢௧ 𝛥 + 𝜖ௗ௢௧

൲ 

2.2. Measuring the Quantum dot 

The Representations 15 to 16 represent the Hamiltonians of a Kitaev Chain 

with the addition of a quantum dot in the Ideal Kitaev Limit regime allow us to observe 

the development of the system. Using our understanding of how the cells within the 

matrix related to the original and final state of the system, it is possible to make some 

predictions of how it will behave in the simulations given their different starting points, 

especially considering our desired results. 

Given all of this, let’s consider that the system starts in the ground state, 

independently if it has an odd or even parity. In both cases, it would mean that the 

system would start at in one of the ground eigenstates of |e,0> or |o,0> and by Rabi 

oscillation there can be an interaction with the quantum dot so the system eigenstates 

changes to |o,1> or |e,1>, in respect to the parity of the original eigenstate. This will 

happen because the tunneling between the Kitaev Chain and the quantum dot (τdot) can 

Representation 16: The representation of the 
Hamiltonian of the Odd parity taken into 

account the parameters of the Ideal Kitaev 
Limit regime. 

Representation 14: The block formed for the Hamiltonians of the Odd Parity Kitaev Chain system with a quantum 
dot in its possible iterations. 

Representation 15: The representation of 
the Hamiltonian of the Even parity taken 
into account the parameters of the Ideal 

Kitaev Limit regime. 
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be activated, making this a switch that can be turned on for chosen amounts of time. 

The switch must stay on for a specific duration, a single “pulse”, to properly capture 

the fermion when it tunnels to the quantum dot, but not allow it to tunnel back to the 

Kitaev Chain. The best value for such will vary with the strength of the pulse, that is, 

the value for the τdot parameter. 

This means that any system will have, before the switch is turned on, the τdot 

value set to 0, disallowing any transition to the states where the quantum is filled. But, 

as the switch is turned on, the τdot is the value changes to the pulse strength (τmax) 

instantaneously and is kept at this value for the pulse duration (T), when the switch is 

turned off and the value returns to 0, also instantaneously. This instantaneity is 

fundamental for the system, as it is necessary to avoid any irregularities on the system 

and to guarantee that the system has two clearly defined states, that is with the switch 

on or off. This is represented by Equation 5, which shows a time equation that relates 

the pulse strength to pulse duration in a step function, and with this in mind, we can 

better analyze the two Hamiltonians presented in Representations 15 and 16. 

𝜏ௗ(𝑡) = 𝜏௠௔௫Θ(t)Θ(T − t) 

In the Hamiltonian for the Even parity (He, Representation 15) the system 

starts energetically starts at |e,0> and can interact to |o,1> because of tunneling coupling 

with the quantum dot. Given that their final state has the on-site energy for the quantum 

dot (𝜖ௗ௢௧), it means that the quantum dot would be filled by a fermion, and therefore 

the parity of the system could be inferred by measuring its charge. But the Hamiltonian 

for the Odd parity (Ho, Representation 16) is different. 

Equation 5: Function of the pulse of the value of the pulse strength. τmax is the maximum value of τdot, T is the 
pulse duration and t is the current time. 
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While its original and final energy levels are the same (as expected from a 

twofold degenerated state), the value on the second cell of the first row is empty, that 

is, has just a “0”. This means that this change of state is invalid, and therefore cannot 

happen, which means that a system starting on the conditions giving in Representation 

16 will never end with the quantum dot filled. This effect can be seen in simulations to 

solve the Schrodinger equation on the quantum dot site on Graph 1, showing the 

probability to find the quantum dot filled in relation to the pulse duration for a few 

different pulse strengths.  

Graph 1 shows the probability curve of the system for Even parity, and it is 

easy to see that each different value of Pulse Strength creates a different curve, with 

different periods and maxima. These will correspond to the Rabi Oscillation into the 

quantum dot site, and its period can be mathematically compared with the expected 

Rabi period calculated from the Even Hamiltonian of the system in Representation 16. 

To do so we focus on the first quadrant of the Matrix, the ground state block, formed 

by a 2x2 matrix of the cells in the upper left corner of the Hamiltonian, and all calculated 

periods match with the observed Probabilities curves periods. From this ground state 

Graph 1: Probability curves for the quantum dot to be find filled for different Pulse Strengths for the Hopping 
parameter, in a system with Even and Odd parity. 

Even, m ax 0.2

Even, m ax 0.6

Even, m ax 1.0

Odd, m ax 0.2

Odd, m ax 0.6

Odd, m ax 1.0
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block is also possible to verify if the parity of the system can be discovered through the 

electron density of the system, but both parities show the same density.  

After calculating the Rabi Frequency equation (Formula 1), it is possible to 

calculate the Rabi Period and compare the period to the period found on the resulting 

simulations we produced. The results of this can be seen in Table 1, which shows the 

different periods found for different Pulse Strengths on the simulated results and the 

calculated Rabi Frequency. It can be seen the values to be very close, helping to verify 

that these simulations are working properly and representing correctly the expected 

behavior of this system in different parameters. The Difference increases as the Pulse 

Strengths grows, but it is because the period decreases quickly as the Pulse Strength 

increase, so even if the difference stays less than 0.3 ħ/Δ in all values, the relative value 

of this difference increases. 

𝑅𝑎𝑏𝑖 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝜏ௗ௢௧

ħ ∗ π
 [Δ/ħ] 

Pulse 

Strength [Δ] 

Rabi Period (analytical), 

(TRabi) [ħ/Δ] 

Rabi Period (numerical), 

(TRabi) [ħ/Δ] 

Difference 

[%] 

0.2 15.71 15.76 0.3% 

0.4 7.85 7.96 1.4% 

0.6 5.24 5.41 3.1% 

0.8 3.93 4.14 5.1% 

1.0 3.14 3.39 7.4% 

While the results for the quantum Even Hamiltonian are visible and show a 

different probability curve for each value of pulse strength, as is expected, the values 

Table 1: Periods of the simulated results and frenquency of the calculated Rabi Oscilation for the ground state 
system following the regime of the Ideal Kitev Limit (Formula 1). 

Formula 1: Calculated Rabi Frequency for the system from its ground state within the regime of the Ideal 
Kitaev Limit  
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for the Odd Hamiltonian are all the same at the bottom of the graph. As expected, 

independently of the pulse strength, there is no probability of finding the quantum dot 

filled if the system has an Odd parity. This could signify that, if there is a detectable 

charge within the quantum dot at the end of the defined pulse duration, we could already 

infer that the system is in Even parity, as Odd parity systems can’t fill this dot. 

Unhappily this is only true in the most ideal of cases because even the Even Probability 

curve has a chance of failing in filling the quantum dot. This chance can be seen in the 

Probability Curve as the distance between the maximum and the 100% Probability (the 

top frame of the graph). 

The Even parity probability curves shown in Graph 1 shows some differences, 

sometimes sizeable, to the possible maximum of probability. This difference is called 

Parity Readout Error (ϵ), and effectively means that, while the system is Even, there is 

a chance that the quantum dot will be unfilled, which creates a degree of unreliability 

to the system. This can be caused by 3 main factors[19]: 

 Leakage due to strong readout tunnel pulse: The tunnel pulse 

between the Kitaev chain and the quantum dot induces a transition of 

the energy states in the Kitaev chain, which can then interact between 

finite-energy levels. It happens strongly in higher τmax.  

 Incomplete charge Rabi oscillations due to slow charge noise: It 

happens when electronic noise detunes the quantum dot so the Rabi 

oscillations are only partial. Naturally, this affects the filling of the 

quantum dot, which may cause a misreading of the parity of the system. 

It is more prevalent at weaker τmax. 

 Charge relaxation to photon emission: Although working in close to 

zero temperatures the system is still able to randomly emit a photon to 
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go to a lower energy state. In a system with even parity, the system can 

be either excited or ground energy. When the system de-excites, it can 

also alter the system parities to one of the other possible[19]. 

Although the parity readout error cannot be fully eliminated, a careful tunning 

of parameters and conditions should allow the value to become so small to be virtually 

negligible and therefore not an issue for future works. Ideally, the system should have 

high reliability but lower pulse duration, maximizing the number of possible pulses in 

any finite amount of time and subsequently the efficiency of the system. 

As it can be seen in Graph 1 the reliability of the system increases seen to 

increase with the use of smaller pulse strengths, mostly due to reduction in the leakage 

of the system, but also start to require considerably longer pulse durations. From now 

on this work focuses on varying different parameters and trying different approaches to 

try to identify the best parameters to find the best results possible for the system. 

2.3. Mathematical Analysis 

Being possible to simulate different iterations of the system with different 

parameters, it is possible to evaluate these different simulations in relation to different 

factors, especially the values of the parity readout error and the pulse duration. These 

multiple iterations will each have their own probabilities curves, and analyzing them 

will help to understand how the system develops in different conditions. One of the best 

ways to analyze these results is to develop analytical formulas to better understand and 

mathematically analyze, the development of the system on changing conditions. 

To make on of such analyzes, we first took the system as described before 

(Kitaev chain in the Ideal Kitaev Limit with a quantum dot connected to the ends of the 

chain with the variable value of the tunneling to the dot and on/site energy) and define 
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what are the variables that we are most interested in. We choose three variables, two 

parameters for the system and on a result from the system, which the values, and their 

interactions, are of particular interest to us: Parity Readout Error (ϵ), Pulse Duration 

(T), and Pulse Strength (τmax). Pulse Duration, in the case of the analyzed data, is the 

duration of the pulse necessary to get maximums in the Probability Curves of a given 

Pulse Strength. 

Of the three, the one that “guides” the system the most is the Pulse Strength, 

which will define the Probability Curve format, and therefore the maximum in these 

and the values of Parity Readout Error, and by progressively increasing it we can 

observe how this change affects the other two variables. By varying it from 0 Δ to 1 Δ 

we produced Graphs 2 (a) and (b), and by fitting a curve to its data we were able to 

generate fitting formulas. These are important not only to better understand, and help 

to model, the behavior of future calculations, but they allow us to compare the results 

produced by these simulations and the analytical results obtained in the literature to 

Graph 2: Values calculated (dots) for different 
variables with changing parameters and fitting 

curve (solid) with specific line equation. 

(a) Pulse Duration by the varying Pulse 
Strength. (b) Parity Readout Error calculated by 

Pulse Strength. (c): Parity Redaout Error 
compared with the value of the Pulse Duration 
for the specific maximum on the Probability 

Curve. 
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verify the correctness of our simulations. It was also possible to create Graph 2 (c) that 

compares the change in the Parity Readout Error as the Pulse Duration changes. 

All the formulas and graphs which are presented come from the Even parity 

systems, as simulations made for the system in odd parity gave the same result without 

variation that fits with the fact that the Odd parity systems have no probability of filling 

the quantum dot.  

Using these Pulse Duration values it is possible to calculate the different Parity 

Readout Errors in different Pulse Strengths, focusing on the Pulse Duration that gives 

the first maximum in the Probability curve. As it can be seen in Graph 2 (c), the Parity 

Readout Error we focus on is at the maximum of the Probability Curve, as if we would 

use this Pulse Strength, we would only focus on the best value to find the Quantum dot 

filled. The different values of Parity Readout Error for different Pulse Strengths, and 

how their Pulse Durations values vary, can be seen in Graphs 2 (a) and (b), 

respectively. 

These results already give us some idea of how the system will behave in future 

simulations, and the trends fit with the literature[19]: the smaller the Pulse Strength, the 

lower the Parity Readout Error, and the higher the Pulse Duration. This creates an 

unideal situation, where to increase the confidence in the system it is necessary to 

decrease the efficiency of the same system as it takes longer to do a measuring. There 

is, however, more that can be done with the system that can be worked to try to 

counterbalance it.  

2.4. Changing the Quantum Dot On-Site Energy 

All sites within the system, be on the Kitaev Chain or in the quantum dot, will 

have an on-site energy, which will be the energy added to the system whenever a 
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fermion fills this site. In the system, however, there will be two different types of sites, 

which will vary in the value of the on-site energy. The first kind of sites are those which 

are within the Kitaev Chain that, according to the Ideal Kitaev Limit, have a value of 0 

on the on-site energy and must stay so. The other kind is the only site on the quantum 

dot, which value is not fix. So far, we have worked with the value for the on-site energy 

on the quantum dot to be the same as the value for the sites in the Kitaev Chain, which 

is 0, but in this Section we will vary its value. 

This variation, however, will be very small. The values that the on-site energy 

can assume to keep with the consistency of the system presented so far are very small, 

lower than 0.01 Δ, so the effects on the Probability Curve are very small, as presented 

in Graph 3. After multiple calculations with On-site energies for the quantum dot 

varying from 0.001 to 0.01, the difference caused by the presence of this on-site energy 

was never more than 0.2% at the highest value of on-site energy, and to the smaller 

values being about a magnitude lower. These differences, however, were always 

Graph 3: Two Probability Curves for a Even parity system with Pulse Strength of 0.5 Δ, but with different On-site 
energy for the quantum dot. The blue solid line has an On-Site energy for the quantum dot of 0 Δ, and the dashed 

orange line has 0.01 Δ. The difference is so small, it is barely noticeable. 
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beneficial to the Probability Curve. Similar effects in value were also perceptible on the 

Pulse Duration of the maxima of these Probability Curves, where the Pulse Duration 

was also affected by, at the highest of On-site energy values, 0.4%. This difference was 

more pronounced at high Tunneling values, as these had smaller Pulse Duration, and 

considerably less pronounced at lower values, sometimes with 2 orders of magnitude 

lower. Different from the differences in the maxima of the Probability Curves, this 

difference was detrimental to the Pulse Duration, increasing it instead of reducing it.  

The results found through these calculations, as it was done before, can be 

verified by the calculation of the Rabi Frequency calculated for the specific 

Hamiltonian. This frequency is different from the previously used, as it requires the 

addition of the On-Site Energy of the quantum dot (ϵdot) term as well as the On-site 

energy to the quantum dot, variation which creates Formula 2. After these additions, 

however, the resulting periods keep the same similarity with the simulated results, once 

again helping to verify our simulations. The results found can be seen in Table 2, which 

shows a slight increase in the difference between the simulated and calculated periods.  

𝑅𝑎𝑏𝑖 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
ට𝜏ௗ௢௧

ଶ +
∈ௗ௢௧

ଶ

4
ħ ∗ π

 [Δ/ħ] 

This is due to the dampening effect caused by the addition of the On-site Energy 

of the quantum dot, which not only reduces the amplitude of the curves but also it's 

period. As long as the values of the On-site Energy of the quantum dot are kept small 

(within the pre-established limit of 0.01 Δ) and we abstain from going beyond Pulse 

Strengths of 1 Δ, then the difference is expected to be small. 

Formula 2: Calculated Rabi Oscilation for the ground state system following the Ideal Kitaev Limit regime with 
added On-Site Energy of the quantum dot. 
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Pulse Strength 

[Δ] 

Rabi Period 

(analytical), [ħ/Δ] 

Rabi Period 

(numerical) [ħ/Δ] 

Difference [%] 

0.2 15.70 15.77 0.4 

0.4 7.85 7.98 1.6 

0.6 5.24 5.43 3.6 

0.8 3.93 4.15 5.7 

1.0 3.14 3.40 8.2 

2.5. Hopping Parameter with Multiple Pulse Strengths 

In the system, no variable of the Kitaev Chain can be changed while it remains 

in the Ideal Kitaev Limit regime, and it must remain in this regime to generate the 

MZMs at its ends. This leaves that the only variables which can be changed in the 

system are those related to the quantum dot, more specifically, the on-site energy and 

the tunneling energy of the quantum dot, and in the previous sections we already 

showed different possibilities for such variations in the system. This, however, does not 

mean that there are no other ways to alter the system.  

Paying attention to Figure 2 it is possible to see that each end of the Kitaev 

chain is connected to the quantum dot, for a total of two different lines, each line 

representing tunneling to one end to the Kitaev Chain. So far, we have controlled the 

value of both the tunneling as if they are equal at all moments, but there is no reason 

that this must be the case. It is possible to consider that each tunneling has a different 

Pulse Strength, although both still work in a switch system (0 when off, Pulse Strength 

when on) and are turned on/off at the same time. This is represented in Figure 3.  

Table 2: Periods of the simulated results and frenquency of the calculated Rabi Oscilation for the ground state 
system following the regime of the Ideal Kitev Limit with the addition of the On-site Energy of the quantum dot 

(Formula 2). 
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This doesn’t fundamentally alter the system but creates a cascade effect starting 

at the Hamiltonians of the Kitaev Chain plus the quantum dot. Imagining this 

Hamiltonian, and taking into account the effects of the Ideal Kitaev Limit regime, we 

have the results found on Representation 13 and 14 for the Even and Odd 

Hamiltonians for the system, respectively.  

Interestingly, these representations now show values for values at position (2,2) 

and (1,2) in the Odd Parity Hamiltonians, which mean that the system could be able to 

change state. These values also explain why they were not there before, as their values 

ቀ
ିఛ೏೚೟భାఛ೏೚೟మ

ଶ
ቁ would become 0 if 𝜏ௗ௢௧ =  𝜏ௗ௢௧ଶ, which is exactly what was happening 

beforehand when we consider both connections with the same Hopping parameter. 

With this difference, it is expected that the Odd Parity system will show some 

probability of having filled the quantum dot, and therefore appearing as probability 

curves on graphs. 

This is shown to be true on the result of simulations shown on Graph 5 and 8, 

that show multiple graphs containing 5 different combinations of Pulse Strengths for 

𝜏ௗ௢௧ଵ and 𝜏ௗ௢௧ଶ, which allows us to analyze the behavior of the probability curve under 

different values of Pulse Strength Obviously, the curve in each graph in which both 

Pulse Strengths are the same is the same result as the one that would be found using the 

previous model.  

Figure 3: Representation of the Kitaev Chain 
with 8 sites and an added quantum dot to both 

its ends, each end with a different Hopping 
paramether. If the Kitaev chain is on the Ideal 
Kitaev Limit ϵଵ to ϵ଼ are 0 Δ, and all tunneling 

between sites within the chain are equal to 
τୡ୦ୟ୧୬ = 1 Δ. 



33 
 

𝐻௘ →

⎝

⎜
⎜
⎜
⎛

−𝛥
𝜏ௗ௢௧ + 𝜏ௗ௢௧ଶ

2
0 0

𝜏ௗ௢௧ + 𝜏ௗ௢௧ଶ

2
−𝛥 + 𝜖ௗ௢௧

𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
0

0
𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
𝛥 0

0 0 0 𝛥 + 𝜖ௗ௢௧⎠

⎟
⎟
⎟
⎞

 

𝐻௢ →  

⎝

⎜
⎜
⎜
⎜
⎛

−𝛥
−𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧

2
0

𝜏ௗ௢௧ଵ − 𝜏ௗ௢௧ଶ

2
−𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
−𝛥 + 𝜖ௗ௢௧

𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
0

0
𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧

2
𝛥

−𝜏ௗ௢௧ଵ − 𝜏ௗ௢௧

2
𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧

2
0

−𝜏ௗ௢௧ଵ − 𝜏ௗ௢௧ଶ

2
𝛥 + 𝜖ௗ௢௧ ⎠

⎟
⎟
⎟
⎟
⎞

 

Comparing Graph 4 to Graph 1, which also shows different probability curves 

for Even parity systems, it is possible to see that there is a positive difference in all 

graphs. While before it could be seen that curves with low Pulse Strength showed good 

Parity Readout Error, they also showed long Pulse Duration, and curves with high Pulse 

Strength showed good Pulse Durations but bad Parity Readout Errors. In Graph 4 it is 

possible to see that some results in all combinations of values for the 𝜏ௗ௢௧ଵ and 𝜏ௗ௢௧ଶ 

curves showed small Pulse Duration while having good Parity Readout Errors. We 

can’t, however, consider the Parity Readout Error of the system just by analyzing the 

possibilities of one of the parities, and both must be taken into consideration. 

 This doesn’t happen with all curves, however, and the reason that it happens to 

some and not others can be perceived when paying attention to the values of the 

combination and the resulting Hopping Parameter of the system. The Hopping 

parameter for a system in any combination is given by following the formula presented 

Representation 13 and 14: The block formed for the Hamiltonians of the Even and Odd Parity, respectively, 
Kitaev Chain system with a quantum dot in its possible iterations with different values for each connection to the 

quantum dot. 
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in the position (2,2) in the energy Hamiltonian, which represents the change of state of 

the system from the Kitaev Chain in a certain parity to it changing parity but filling the 

quantum dot. Each different parity has a different Hopping Parameter, and the formulas 

for the even and the odd parity are presented as Formulas 1 and 2, respectively.  

𝜏ௗ௢௧ =
𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
 [∆] 

𝜏ௗ௢௧ =
−𝜏ௗ௢௧ଵ + 𝜏ௗ௢௧ଶ

2
 [∆] 

Formula 4: Formula for the calculation of 
the Hopping parameter for the Odd parity 

system with different Pulse Strength for each 
connection to the quantum dot. 

Graph 4: Probability of finding the quantum dot filled in for different combinations of τୢ୭୲ଵ and τୢ୭୲ଶ in a system 
with an Even parity. The on-site energy for the quantum dot is 0. 

Formula 3: Formula for the calculation of the 
Hopping parameter for the Even parity system 

with different Pulse Strength for each 
connection to the quantum dot. 
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These results can be seen in Graph 5, which show the probability curves for 

the Odd parity result with multiple combinations of 𝜏ௗ௢௧  and 𝜏ௗ௢௧ଶ values, including 

the combination of the same values. This combination, specifically, appears as a straight 

line at the bottom of the graph, as it follows the behavior presented before. It is also 

possible to see that the other lines while being very different from the synodal waves 

than the Even parity curves in Graph 6 show a pattern to having longer Pulse Durations 

the closer that 𝜏ௗ௢௧ଵ and 𝜏ௗ௢௧ଶ values are to be the same. 

As before, the simulated results are shown in Graph 4 and Graph 5 have been 

verified by comparing against the Rabi Frequency calculated for the system in its 

Graph 5: Probability of finding the quantum dot filled in for different combinations of τୢ୭୲ଵ and τୢ୭୲ଶ in a 
system with an Odd parity. The on-site energy for the quantum dot is 0. 
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ground state, but now with alterations to include the two different Hopping Parameters. 

Due to the existence of two different Hopping Parameters (Formulas 3 and 4), there is 

a need for two different Rabi Frequency formulas, one for parity. In both cases, it is 

only the 𝜏ௗ௢௧ parameter that is changed from Formula 1 (or Formula 2, if it is to 

consider the On-site Energy of the quantum dot too) that is substituted by the Formula 

3 or 4 if the system is in Even or Odd parity, respectively. Representations for both 

parities can be seen in Formulas 5 and 6. 

𝐸𝑣𝑒𝑛 𝑅𝑎𝑏𝑖 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
ට(𝜏ௗ௢௧ + 𝜏ௗ௢௧ଶ)ଶ +∈ௗ௢௧

ଶ

4
ħ ∗ π

 [Δ/ħ]  

𝑂𝑑𝑑 𝑅𝑎𝑏𝑖 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
ට(𝜏ௗ௢௧ଶ − 𝜏ௗ௢௧ଵ)ଶ +∈ௗ௢௧

ଶ

4
ħ ∗ π

 [Δ/ħ] 

The simulation of the period of different combinations of Pulse Strengths has 

shown no significant Difference for the Even parity system, but it was noticed that this 

difference on Odd parity grows large when the parities are close and high. For this 

reason, our calculations have limited themselves to keep one of the Pulse Strength up 

to 0.5 Δ.  

Beyond the Hopping Parameter, however, one more important factor to take 

into account a system with different Pulse Strength for different connections to the 

quantum dot. It is the fact that, because now the system in odd parity can fill the 

quantum dot the fact that the quantum dot is filled is no longer necessarily means that 

the system is in even parity. Beforehand an error in the readout would mean that the 

Formula 5: Calculated Rabi Frequency for the ground state system following the Ideal Kitaev Limit regime with 
added On-Site Energy of the quantum dot and considering an Even Hopping Parameter (Formula 3) for different 

Pulse Strenghts. 

Formula 6: Calculated Rabi Frequency for the ground state system following the Ideal Kitaev Limit regime with 
added On-Site Energy of the quantum dot and considering an Odd Hopping Parameter (Formula 4) for different 

Pulse Strenghts. 
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quantum dot was not filled when the system was in even parity, but now the system 

might be in odd parity while the quantum dot is also filled.  

This means that it is necessary to take into consideration both the Odd parity 

and Even parity probabilities before considering that a certain combination of Pulse 

Duration and Pulse Strength gives us a good result. A combination that has a 100% 

probability of having the quantum dot filled at one parity, but has also a 50% probability 

that it could be filled by a different parity has only 50% of being measured correctly. It 

is also important to mention that, as can be seen, whenever one of the values of Pulse 

Strength approaches 0 Δ, the probability curves for both parities become more and more 

similar, to the limit of becoming the same when one of them is 0 Δ. This effect can be 

seen in Graph 6. 

3. Optimizing Parameters 

3.1. Finding the best Hopping Parameter 

In the previous section that the factor that affects the behavior of the probability 

curve is the Hopping Parameter, which varies for even and odd parities (Formula 3 and 

Even, dot1 0.2

Odd, dot1 0.2

Even, dot1 0.4

Odd, dot1 0.4

Even, dot1 1

Odd, dot1 1

Graph 6: Probability of finding the quantum dot filled in for different of τୢ୭୲ଵ but all τୢ୭୲ଶ are equal to 0. Full 
lines are Even parity, dashed are Odd parity. The on-site energy for the quantum dot is 0. 



38 
 

2, respectively). This value is produced by the combination of the Pulse Strengths, but 

this combination is seen to be more relevant to the Probability curve than the individual 

values of the Pulse Strengths. This allows us to investigate the system focusing on such 

combination, and after finding a promising combination to investigate and observe what 

would be the best fitting Pulse Strengths. 

To observe such phenomena, we created simulations that will calculate the best 

value for the Parity Readout Error for certain combinations of Pulse Strengths. This 

best value is the smallest Parity Readout Error that the system can get, with the lowest 

Pulse Duration. Of the two Pulse Strength values, one was left to change progressively 

from 0 Δ to 1 Δ in 0.01 Δ steps while the other was kept fix at 0.5 Δ. For each step of 

the combinations, 5000 realizations were averaged, each with a randomly chosen on-

site energy for the quantum dot attributed to it to take into account perturbation theory. 

These values were chosen from a random Gaussian variable with 0 Δ mean and 0.01 Δ 

noise, as it is presented in the literature[19]. 

Graph 7: Best Parity Readout Error for the the Even system for different Hopping Parameters that vary from 0.25 
to 0.75. The On-site energy of the quantum dot is defined randomly. The Hopping Parameter is calculated by the 

Formula 3. 
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For the Even parity system, this gives us middle range values of Hopping 

Parameters (calculated with Formula 3, the Even parity Hopping parameter formula), 

as the resulting combination of Pulse Strengths is just an average of the Pulse Strengths, 

and the combinations will vary from 0.25 Δ to 0.75 Δ. The values we obtained from the 

Parity Readout Error for the Even parity system can be seen in Graph 7. It can be seen 

that the values calculated for the Parity Readout Error are very small for the smallest 

values of the Hopping Parameters, with a semi-continuous increase until about 0.35 Δ, 

when it drops until about 0.43 Δ, from where it increases again. As one of the Pulse 

Strengths is fix at 0.5 Δ only the other one variate, and the interval of this drop goes 

from about 0.2 Δ to 0.36 Δ. While the Parity Readout Error results for the low 

combination are the best, it has been seen that low combination values also have a large 

Pulse Duration. For the Odd parity system, the Hopping Parameters that result from 

Formula 4 (the odd parity Hopping parameter formula) go to the negatives, as 

Formula 4 has a subtraction of the Pulse Strengths.  

Graph 8: Best Parity Readout Error for the the Odd system for different Hopping Parameters that vary from 0 
to 1. The Hopping Parameter is calculated by Formula 4. The On-site energy of the quantum dot is defined 

randomly. 
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As this might add 

unnecessary confusion, and to 

facilitate comparisons with the 

values in the Even Parity Readout 

Error, the results from the 

calculations for the Odd Parity 

Readout Error will be presented 

with the x-axis as the Hopping 

Parameter calculated from 

Formula 3, which will be the 

default Hopping Parameter from 

now on.  

In this case, the values of 

the combination will go from the 

0.25 Δ to 0.75 Δ. As expected, in 

Graph 8 we can see what we 

would expect to see for the inverse 

of the probability of what we 

would expect for an Odd Parity 

system: maximum when the 

Tunneling parameters are close 

(near the middle of the graph), and 

with far smaller values from that 

point. This will be important to notice for future calculations and will be very useful in 

future calculations. It is also important to notice that, given the fact that the Parity 

Figure 4: Calculation of the Overall Parity Readout Error from 
the Even and Odd Parity Probability Curve. (a) is the Even 
Probability Curve, (b) the Odd Probability Curve, (c) is the 

Overall Even Probability Curve and (d) is the Overall Even Parity 
Readout Error. 
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Readout Error of the Odd Parity system is far larger than the one for the Even, its shape 

will be more represented after the calculation. 

While both calculations are important to understand the behavior of these 

curves, it is necessary to take into account how they work at the same time. As stated 

previously, it is important to consider the probability of both parities at any given Pulse 

Duration, as the probabilities of one parity affect the Parity Readout Error of the other. 

To observe this effect for different combinations of the Pulse Strengths, the value of 

the best Parity Readout Error for the Even parity where reduced by the value of the 

Parity Readout Error of the Odd parity at the same Pulse Duration. This gives the 

Overall Parity Readout Error of the Even parity system, which is an indication of how 

reliable is the measurement of an Even Parity in a system in a given combination of 

Pulse Strengths if the measurement is done at the best Pulse Duration. This can be better 

understood in Figure 4, which shows each step of the calculation of one point and 

presents how we go to the calculation of Formula 7: 

 the calculation of the Probability curve for the Even and Odd parity ((a) 

and (b)). 

  the finding of the maximum for the Even parity Probability Curve (P1) 

and the respective value on the same Pulse Duration for the Odd parity 

Probability Curve (P2). 

 Subtracting the Odd Probability from the Even Probability (P1-P2) to 

create the Overall Probability ((c)). 

 Reducing the Overall Probability from 1 to get the Overall Parity 

Readout Error (1-(P1-P2)).  
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑃𝑎𝑟𝑖𝑡𝑦 𝑅𝑒𝑎𝑑𝑜𝑢𝑡 𝐸𝑟𝑟𝑜𝑟 (𝑇) = 1 − |𝑃௘௩௘௡(𝑇) − 𝑃௢ௗௗ(𝑇)|[%] 

The Optimal Parity Readout Error for any system is the minimum of this curve. 

Ideally, we would find a combination of Pulse Strengths in which the Parity Readout 

Error for the Even parity is 0%, but the Odd Parity Readout Error is 100%, making the 

Overall Parity Readout Error also 0%. It is also possible that there is a bigger value than 

100%, which means that at that combination of Pulse Strengths would there be a bigger 

probability of finding the system at Odd parity than at Even. Due to the behavior seen 

in Graph 8, in which the Odd Parity Readout Error will have its highest point at the 

point where both tunneling parameters are the same, this point will always appear as 

one of the points with the best Overall Parity Readout Error.  

Calculating to find the Overall Parity Readout Error for the lowest Pulse 

Duration possible we get Graph 9, which shows clearly the expected lower point at the 

middle point of the graph, where both Pulse Strengths are the same. Given that this 

simulation keeps one of the Pulse Strengths at 0.5 Δ and the other varies from 0 Δ to 1 

Δ, the expected values for the best Overall Parity Readout Error should at Hopping 

Graph 9: Overall Parity Readout Error for the lowest Pulse Duration. 

Formula 7: Formula for the calculation of the Overall Parity Readout Error from the maximum of the Probability 
Curve for the Even Parity (P1) and the point int the Odd Probability Curve of the Odd Parity (P2). 
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Parameter of 0.5 Δ. Interestingly, the best Overall Parity Readout Error found was not 

at 0.5 Δ, but at 0.49 Δ, with an Overall Parity Readout Error 5.4% and a Pulse Duration 

of 3.34 ħ/Δ. 

3.2. Finding the best Pulse Strength combination  

After finding the Hopping Parameter with the best Overall Parity Readout Error, 

it can be explored which combination of Pulse Strengths, if any at all, produces better 

results of Overall Parity Readout Error. 

As the Hopping Parameter is calculated from the Pulse Strengths of each 

connection to the quantum dot by Formula 3 and 2 for the Even and Odd parity 

systems, respectively, it could be expected that, as long as the combination of the Pulse 

Strengths is the same, the Probability Curves would stay the same. It is, however, not 

true. The interaction between the Pulse Strengths in each connection goes beyond the 

value of the Hopping Parameter, and different Pulse Strengths, even with the same 

Hopping Parameter, might have different results.  

Graph 10: Overall Parity Readout Error for the low Pulse Duration with the same Hopping Parameter of 0.49 
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To verify it we simulated multiple different possible combinations of Pulse 

Strengths that would end with the same Hopping Parameter we found in the previous 

section to have the best Overall Parity Readout Error (0.49 Δ). The simulation was done 

by varying both Pulse Strengths so after they went through Formula 4 they would have 

the same Hopping Parameter in all cases. This was done by progressively increasing 

one of the Pulse Strengths from 0 Δ, while the other progressively reduced from the 

double of the Hopping Parameter (0.98, in this case) so their average would remain the 

same. This calculation guarantees a symmetrical nature to the results, centered around 

the Hopping Parameter of 0.49 Δ.   

Graph 10 shows the result in the calculation, and its lowest point is found at 

the Hopping Parameter of 0.49 Δ, with an Overall Parity Readout Error of 5.3% and a 

Pulse Duration of 3.35 ħ/Δ.  

4. CONCLUSION 

Majorana Wires, and the Majorana anyons itself, are on the cutting edge of 

technology and even of scientific knowledge itself. While many advances and 

developments have been and are being done in this field[14, 16, 17, 18], including 

prototypes, simulations are still one of the best ways to test and comprehend and the 

behavior of such systems and how to optimize them to the point they are a viable option 

to replace current systems.  

In the simulations presented in this work, we explored different variations of 

the system for a Majorana Wire, taking into account different variables that affect the 

results of the system as well as different parts of the design of the system. As many 

have observed before[9, 16, 19], the two-fold degeneracy that is necessary for the Majorana 

Wire to have its properties that make are interesting for quantum computing, creates a 
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special difficulty for the readout. The solution explored on this, and other[19], works is 

to add a quantum dot to the system, allowing that the fermions in the systems move to 

outside of the positive conditions, allowing the parity to be converted into readable 

charge. This elegant solution allows to use of the special qualities of the Majorana Wire 

and opens the door for this system to become a real hardware, but also opens the 

necessity to explore and improve the readout results of such devices. This is, however, 

a still very new technology, and due to its quantum nature, mathematically complex 

and expensive to produce physically, simulations like the ones presented in this work 

are one of the best ways to better understand how to make these readouts efficient and 

reliable. 

What we observed in this work is that any potential work with this system will 

need to balance 2 important factors: the Pulse Duration and the Parity Readout Error 

(and the Overall Parity Readout Error, if the system uses two different Pulse Strengths). 

The latter is certainly more important than the former, as it directly affects the reliability 

of the system, but the former must not be forgotten. Lower Pulse Strengths can produce 

considerably better Parity Readout Errors but at the cost of large Pulse Durations, which 

would certainly harm the efficiency of these devices. Among the challenges to balance 

these two that will certainly be explored is the choice of the Pulse Strength, if such will 

be kept the same or different combinations will be taken. 

After many simulations, we found what we believe to be the best results of Pulse 

Duration and Parity Readout Error, but we are certain that future works can improve 

these values, although we do not believe that they can be much improved without 

further change into the system itself. Therefore, we believe that further significant 

development in the field will happen on investigating how to improve the design of the 



46 
 

Majorana Device itself, which many are already working into[15], and to combat the 

main factors that cause this Parity Readout Error in the first place. 
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